71 research outputs found

    Developing a Conceptual Framework for Cloud Security Assurance

    Get PDF
    Postprin

    Definite Formulae, Negation-as-Failure, and the Base-extension Semantics of Intuitionistic Propositional Logic

    Get PDF
    Proof-theoretic semantics (P-tS) is the paradigm of semantics in which meaning in logic is based on proof (as opposed to truth). A particular instance of P-tS for intuitionistic propositional logic (IPL) is its base-extension semantics (B-eS). This semantics is given by a relation called support, explaining the meaning of the logical constants, which is parameterized by systems of rules called bases that provide the semantics of atomic propositions. In this paper, we interpret bases as collections of definite formulae and use the operational view of the latter as provided by uniform proof-search -- the proof-theoretic foundation of logic programming (LP) -- to establish the completeness of IPL for the B-eS. This perspective allows negation, a subtle issue in P-tS, to be understood in terms of the negation-as-failure protocol in LP. Specifically, while the denial of a proposition is traditionally understood as the assertion of its negation, in B-eS we may understand the denial of a proposition as the failure to find a proof of it. In this way, assertion and denial are both prime concepts in P-tS.Comment: submitte

    Proof-theoretic Semantics and Tactical Proof

    Full text link
    The use of logical systems for problem-solving may be as diverse as in proving theorems in mathematics or in figuring out how to meet up with a friend. In either case, the problem solving activity is captured by the search for an \emph{argument}, broadly conceived as a certificate for a solution to the problem. Crucially, for such a certificate to be a solution, it has be \emph{valid}, and what makes it valid is that they are well-constructed according to a notion of inference for the underlying logical system. We provide a general framework uniformly describing the use of logic as a mathematics of reasoning in the above sense. We use proof-theoretic validity in the Dummett-Prawitz tradition to define validity of arguments, and use the theory of tactical proof to relate arguments, inference, and search.Comment: submitte

    From Proof-theoretic Validity to Base-extension Semantics for Intuitionistic Propositional Logic

    Full text link
    Proof-theoretic semantics (P-tS) is the approach to meaning in logic based on \emph{proof} (as opposed to truth). There are two major approaches to P-tS: proof-theoretic validity (P-tV) and base-extension semantics (B-eS). The former is a semantics of arguments, and the latter is a semantics of logical constants in a logic. This paper demonstrates that the B-eS for intuitionistic propositional logic (IPL) encapsulates the declarative content of a basic version of P-tV. Such relationships have been considered before yielding incompleteness results. This paper diverges from these approaches by accounting for the constructive, hypothetical setup of P-tV. It explicates how the B-eS for IPL works

    Defining Logical Systems via Algebraic Constraints on Proofs

    Full text link
    We comprehensively present a program of decomposition of proof systems for non-classical logics into proof systems for other logics, especially classical logic, using an algebra of constraints. That is, one recovers a proof system for a target logic by enriching a proof system for another, typically simpler, logic with an algebra of constraints that act as correctness conditions on the latter to capture the former; for example, one may use Boolean algebra to give constraints in a sequent calculus for classical propositional logic to produce a sequent calculus for intuitionistic propositional logic. The idea behind such forms of reduction is to obtain a tool for uniform and modular treatment of proof theory and provide a bridge between semantics logics and their proof theory. The article discusses the theoretical background of the project and provides several illustrations of its work in the field of intuitionistic and modal logics. The results include the following: a uniform treatment of modular and cut-free proof systems for a large class of propositional logics; a general criterion for a novel approach to soundness and completeness of a logic with respect to a model-theoretic semantics; and a case study deriving a model-theoretic semantics from a proof-theoretic specification of a logic.Comment: submitte

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Full text link
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist's B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL, in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established.Comment: 27 page

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    Completeness via Canonicity for Distributive Substructural Logics: A Coalgebraic Perspective

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to their relational semantics by completeness-via-canonicity. Specifically, we use the topological theory of canonical (in) equations in distributive lattice expansions to show that distributive substructural logics are strongly complete with respect to their relational semantics. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions

    Resource-Bound Quantification for Graph Transformation

    Full text link
    Graph transformation has been used to model concurrent systems in software engineering, as well as in biochemistry and life sciences. The application of a transformation rule can be characterised algebraically as construction of a double-pushout (DPO) diagram in the category of graphs. We show how intuitionistic linear logic can be extended with resource-bound quantification, allowing for an implicit handling of the DPO conditions, and how resource logic can be used to reason about graph transformation systems
    corecore